
Morpheus II: A RISC-V Security Extension for Protecting
Vulnerable Software and Hardware

Austin Harris†, Tarunesh Verma‡, Lauren Biernacki‡, Alex Kisil∅, Misiker Aga∅, Valeria Bertacco‡∅, Baris Kasikci‡, Mohit Tiwari†, and Todd Austin‡∅

University of Michigan‡, University of Texas†, Agita Labs∅

I. TOWARD MORE DURABLE SECURITY

With the growth of cloud computing and IoT, data security has
never been more important. With cloud computing, we hand over
our personal and private information to cloud providers and their
customers, and we can only hope that they steward our data well.
For IoT devices, we install them everywhere in our home, cars, and
workplace, and then we trust these devices to not spy on us. We are all
extending much trust to the manufacturers and vendors of computing
systems today, and in many cases they are letting us down. Yet, the
world of computing is replete with examples of data breaches and
poor stewardship of sensitive data, suggesting that stronger security
measures are surely needed.

Today’s Defenses Lack Durability: In modern computer security,
they are two primary means be which systems are protected. The
first is patch-based security approach where software and hardware
vulnerabilities are addressed by patching the system’s software. The
key challenge with this approach is that attacks will not stop until
the system is free of vulnerabilities. Unfortunately, the complexity of
modern software and hardware, combined with the rate at which new
software is created, ensures that patched systems always have plenty
of additional vulnerabilities for motivated attackers to exploit.

A more powerful approach is to outfit the system’s software
or hardware with a targeted defenses against well-known attacks.
Examples of these defenses include no-execute stacks, which prevents
code injection on the stack, or Intel’s Cache Allocation Technology
(CAT), which silences covert channels in the last-level cache. These
defenses are superior to patch-based defenses because they can
typically defend against entire class of attacks. However, targeted
attacks often have limited scope, thus, attackers will devise ways
to step around these defenses. For example when no-execute stacks
where introduced, the attack community quickly perfected techniques
to inject code into the heap with heap-spray attacks.

Unfortunately, the sum total of today’s security defense only throws
moderately-strong barriers into the face of oncoming attackers for
existing attacks. If new “zero-day” vulnerabilities are discovered,
systems are completely unprotected. As such, there is a great need
for new thinking in computer security, in particular, for defenses that
are more durable against a fast-growing slate of security attacks.

Morpheus Defenses Work Despite Vulnerabilities: The Morpheus
security technology works in a vulnerability-agnostic fashion [1],
allowing it to stop attacks on vulnerable software and hardware.
Where traditional security defense focus on specific vulnerabilities,
Morpheus defenses instead obfuscate the information assets required
by attacks. This approach denies attackers timely access to the critical
information assets needed to attack systems. The critical information
assets that Morpheus can protect include the following:

∙ code representation
∙ code and data pointer representation
∙ code and data layout (both absolute and relative)

Information assets are protected using encryption and churn to protect
critical information assets. By encrypting code and pointers, attacks

lose the ability to find code gadgets, inject pointers into the stack,
perform relative address attacks, and so on. Yet, savvy attackers can
adapt to even high-entropy encryption by utilizing memory disclosures
and side-channel attacks to eventually acquire the information assets
they need to attack a system. Consequently, Morpheus uses churn to
re-key the cipher used to protect information assets on a regular basis,
thereby destroying any disclosed information assets.

A key aspect of Morpheus is that it only protects information assets
within the program and microarchitecture implementation. These assets
possess undefined semantics because they are the internal workings
of compilers and microarchitectures. Consequently, encrypting and
churning these assets, while breaking attacks, has little to no effect on
normal software. This property allows Morpheus to imbue defenses
into vulnerable software and hardware without putting undue burdens
on programmers and system software.

It is quite challenging to find any attack that doesn’t utilize some
subset of these critical information assets. Thus, protecting these
information assets broadly stops security attacks [2], ranging from
control-flow attacks, to privilege escalation, to side-channel attacks
and beyond. Moreover, it is likely that attacks discovered in the future
will also utilize some subset of these information assets, thus, it is
possible that Morpheus systems could have some measure of immunity
from attacks in the near future.

II. THE MORPHEUS II ARCHITECTURE

Morpheus II is a refinement of the original Morpheus design [1].
Morpheus II was developed in the DARPA SSITH program, which had
a requirement that designs be placed into the DARPA FETT program,
where it was to be red-teamed for potential vulnerabilities. Thus,
while original Morpheus had significant concerns and design aspects
related to performance, the goal of Morpheus II was to capture the full
security strength of Morpheus defenses even if occasional sacrifices
were made in overall performance. Despite this focus on security,
the performance impacts of Morpheus II are moderate, and we are
confident they could be minimized with the attention of an industrial-
strength design team. The Morpheus II architecture is implemented
as a RISC-V extension applied to the Rocket Core pipeline.

Additionally, Morpheus II was tuned to primarily stop remote code
execution (RCE) attacks, which are a high-value class of attacks that
allow remote attackers to inject code into vulnerable machines. For
example, Morpheus II RCE defenses would handily stop the Microsoft
Exchange Server RCE attacks that were in the news as we the time of
this writing. As another example, one of the largest security breaches
in US history, the 2017 Equifax breach, was also initiated via an RCE
attack on a vulnerability in the Apache Struts library that would have
been easily stopped with Morpheus II defenses.

Morpheus II Architectural Features: Morpheus II implements
always-encrypted code pointers. A single-cycle twelve-round Simon
cipher uses a randomly generated key to strongly encrypt all code
pointers (i.e., function pointers and return pointers). From attacker’s
perspective, all code pointers are encrypted all the time. As such, code
pointers in DRAM, caches or registers are encrypted. The only time

Instruction Class Example Semantics

Arithmetic enc_add r1, r2, 4 r1 = enc(dec(r2) + 4)
Relational enc_sleq r1, r2, r3 r1 = dec(y) ≤ dec(r3)
Indirect Jump enc_jalr r2, LR LR = enc(PC), PC = dec(r2)

Table I: Morpheus II RISC-V ISA Extensions. Morpheus II adds three
classes of instructions: i) always-encrypted pointer ALU operations, ii)
decrypting pointer relational tests, and iii) decrypting indirect jumps and
returns. Note that the enc() and dec() interfaces encrypt and decrypt
always-encrypted pointers within the pipeline.

that code pointers are decrypted are in the cycle immediate before
a function pointer or return address is placed into the PC register.
In the Rocket core pipeline, this requires an additional stage in the
JALR instruction implementation, extending its latency by one cycle.

When code pointers are always encrypted, it complicates the
attacker’s ability to forge code pointers. Additionally, relative address
attacks become difficult to synthesize because computing a relative
address from an encrypted pointer is a cryptographically hard problem.
Since all RCE attacks involve some form of code pointer injection or
manipulation, these attacks become significantly more challenging.

In addition, Morpheus II implements always-encrypted code. Like
code pointers, a twelve-round Simon cipher uses a randomly generated
key to strongly encrypt all instructions. Code remains always encrypted
in the binary, DRAM, and all caches. Thus, instructions are only
decrypted in the pipeline for execution. This decryption is implemented
with a single decryption stage immediately before the instruction
decode stage in the Rocket core pipeline. By always encrypting code,
it becomes very challenging for attackers to identify code gadgets or
synthesize new code for injection.

To thwart disclosures and side-channel attack, Morpheus II churns
encryption keys whenever the system boots, reboots, or when a security
violation has been detected (e.g., segmentation fault or misaligned
instruction fetch). On each of these events, the system is very quickly
warm-booted, which reload the code under a new encryption key, and
reconstitutes all code pointers from the original binary, again under
a new encryption key. The churn process ensures that any valuable
information gathered by attackers since the last churn cycle will be
lost due to the re-keying of the Simon ciphers. In addition, by limiting
churn to system warm boots, Morpheus II did not require tagged
memory, which significantly reduced the complexity of the changes
needed for the Rocket core, which in turn led to a fast design cycle
for a small academic design team.

III. PERFORMANCE, POWER AND S/W IMPACT ANALYSIS

The Morpheus II design was deployed into an Amazon F1 Xilinx
UltraScale Plus FPGA. The Morpheus ISA extensions and extra
decryption stages were added to the RISC-V Rock et Core design.
The power increase due to the extra logic and ciphers was only 0.8%
for the entire Rocket Core design, including the DRAM controller and
the XDMA PCIE bus controller. If only the Rocket Core pipeline is
considered (about 20% of overall power), the relative power overhead
increases to about 4%. Area overheads were uniformly low, at only
0.2%, measured in increased FPGA resource utilization.

Performance impacts were quite low. The decryption stages add
on additional stage to the front-end of the pipeline for instruction
decryption, which increases branch misprediction latency from 4 to 5
cycles. Additionally, an extra cycle of latency is exposed on all indirect
jumps and returns. For a system with a Gshare branch predictor and
infrequent indirection, the overheads will be well below 5% slowdown.
For our deployed system running a network facing application, the
performance impacts were in the range of our measurement noise.

Software and design impacts were also low. The changes necessary
to LLVM to support Morpheus II compilation was less than 1k lines
of code. In addition, the changes to the Chisel code to accommodate
the Morpheus II extensions on the Rocket Core totalled only 369
additional lines, including the cipher engine. Finally, few software
changes were required in the software running on the Morpheus
II system for the FETT Challenge. Our platform was running the
Michigan Mock Medical Database (M3DB) running on a FreeRTOS
web server with SQLite database, totaling more than 200K lines of
code. To accommodate Morpheus II defenses, only three lines of code
needed to be changed.

IV. MORPHEUS II SECURITY ANALYSIS

In the summer of 2020, the Morpheus II architecture was entered
into the DARPA FETT Challenge [3], along with three additional
teams. The security firm Synack ran the challenge with their crowd-
sourced “researchers” providing red-team testing. Galois adapted
FireSim for the test hardness, which allowed the Morpheus II design
to be deployed into the Amazon AWS F1 cloud instance. When a
researcher attacked one of our machines, they would spin up an AWS
F1 instance with a DARPA SSITH secure core.

All teams were required to stand up a challenge application with
known software vulnerabilities. We built the Michigan Mock Medical
Database (M3DB), which was a mock COVID-19 patient database for
medical research, with a network-facing REST interface for querying
the patient data in a differentially private manner. Attackers had
to penetrate this database and modify or exfiltrate patient data to
successfully attack the Morpheus II target.

All teams were requested to provide known software vulnerabilities
in the code base, with ours being in the FreeRTOS and SQLite software
packages. This requirement grew out of the DARPA SSITH program,
which was focused on hardware techniques for protecting vulnerable
software. In addition, each team had make the entire build environment
available to the researchers, so they could install and build their own
code for testing and study purposes. Each team also had to build a
mission list, which was a step-by-step guide detailing easy-to-hard
attack scenarios. Bug bounty payouts were gauged to the mission
difficulty. DARPA paid bug bounties for finding vulnerabilities, which
were never disclosed, but DARPA did say publicly that the bounties
went at least to $50k.

During the three months of the FETT challenge, the Morpheus II
target had 535 researchers trying to penetrate it. Despite being the
second most attacked target in the FETT program, the Morpheus II
target was never penetrated and no vulnerabilities were discovered.
By the end of the program, DARPA disclosed that 10 vulnerabilities
were discovered by the research (on targets other than Morpheus II).

V. CONCLUSIONS AND FUTURE DIRECTIONS

Our efforts are now turning toward defining a bona fide RISC-V
extension to protect pointers. Additional considerations are entering
into the design, including support for virtual memory and per-process
keys with preemptive scheduling. In addition, an effort at Agita Labs
is working to commercialize a derivative of the Morpheus technology
for the Azure and AWS clouds.

REFERENCES
[1] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek, M. T. Aga,

A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik, M. Tiwari, and T. Austin,
“Morpheus: A Vulnerability-Tolerant Secure Architecture Based on Ensembles of
Moving Target Defenses with Churn,” in Architectural Support for Programming
Languages and Operating Systems, 2019.

[2] L. Biernacki, M. Gallagher, Z. Xu, M. Tadesse Aga, A. Harris, S. Wei, M. Tiwari,
B. Kasikci, S. Malik, and T. Austin, “Software-driven security attacks: From
vulnerabilitysources to durable hardware defenses,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), 2021.

[3] “Finding exploits to thwart tampering (FETT) bug bounty,” https://fett.darpa.mil/.

https://fett.darpa.mil/

	Toward More Durable Security
	The Morpheus II Architecture
	Performance, Power and S/W Impact Analysis
	Morpheus II Security Analysis
	Conclusions and Future Directions

