
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018 995

Recryptor: A Reconfigurable Cryptographic
Cortex-M0 Processor With In-Memory and
Near-Memory Computing for IoT Security

Yiqun Zhang , Student Member, IEEE, Li Xu, Student Member, IEEE, Qing Dong , Student Member, IEEE,
Jingcheng Wang, Student Member, IEEE, David Blaauw, Fellow, IEEE,

and Dennis Sylvester, Fellow, IEEE

Abstract— Providing security for the Internet of Things (IoT)
is increasingly important, but supporting many different crypto-
graphic algorithms and standards within the physical constraints
of IoT devices is highly challenging. Software implementations
are inefficient due to the high bitwidth cryptographic oper-
ations; domain-specific accelerators are often inflexible; and
reconfigurable crypto processors generally have large area and
power overhead. This paper proposes Recryptor, a reconfigurable
cryptographic processor that augments the existing memory of a
commercial general-purpose processor with compute capabilities.
It supports in-memory bitline computing using a 10-transistor
bitcell to support different bitwise operations up to 512-bits wide.
Custom-designed shifter, rotator, and S-box modules sit near
the memory, providing high-throughput near-memory computing
capabilities. We demonstrate Recryptor’s programmability by
implementing the cryptographic primitives of various public/
secret key cryptographies and hash functions. Recryptor runs
at 28.8 MHz in 0.7 V, achieving 6.8� average speedup and
12.8� average energy improvements over the state-of-the-art
software- and hardware-accelerated implementations with only
0.128 mm2 area overhead in 40-nm CMOS.

Index Terms— Advanced Encryption Standard (AES), cryp-
tographic processor, differential power analysis (DPA), elliptic
curve cryptography (ECC), in-memory computing, Internet of
Things (IoT), reconfigurable hardware, Secure Hash Algorithm 3
(SHA-3), security.

I. INTRODUCTION

SECURITY is of utmost concern for Internet of
Things (IoT) applications due to the potential pervasive-

ness of IoT devices. In order to ensure secure communica-
tions, we need good authentication for trustworthiness, data
encryption for confidentiality and integrity, and fault tolerance
for resilient operation under attack. Cryptographic algorithms
provide the insurance for functional security, and they are
mostly divided into three types: symmetric, asymmetric, and
hash functions. Typically, asymmetric (public key) cryptog-
raphy (PKC) is used for key exchange, and the well-known

Manuscript received August 7, 2017; revised October 22, 2017; accepted
November 10, 2017. Date of publication February 5, 2018; date of
current version March 23, 2018. This paper was approved by Guest
Editor Makoto Ikeda. (Corresponding author: Yiqun Zhang.)

The authors are with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
zhyiqun@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2017.2776302

Rivest-Shamir-Adleman (RSA) cryptosystem was proposed by
Rivest et al. [1] in 1977. Elliptic curve cryptography (ECC)
[2], [3] was discovered in 1985 and is a popular option for
PKC; for example, the STSAFE-A100 chip uses ECC for
authentication [4]. For the desired security level, ECC needs
significantly smaller keys than RSA, which results in smaller
energy and memory requirements. An ECC can be applied
either to binary field or prime field, and the comparison of
these two fields can be found in [32] regarding the energy,
runtime, and toplevel protocols. Symmetric (secret key) cryp-
tography is used for efficiently encrypting data; for example,
the Advanced Encryption Standard (AES) is a commonly
used symmetric block cipher, approved by National Institute
of Standards and Technology (NIST) [5]. Hash functions
irreversibly “encrypt” information and provide a digital finger-
print, which are used for message integrity. The Keccak hash
function won the Secure Hash Algorithm 3 (SHA-3) competi-
tion hosted by NIST in 2012 [6]. In summary, the underlying
mathematics varies greatly across cryptosystems, and security
standards evolve over time. A full system design with secure
communications would require different security algorithms of
various types [7].

IoT platforms have limited computational resources for
energy/area reasons. Cryptographic functions typically require
high bitwidth calculations (64–512 bits), but embedded proces-
sors’ datapaths tend to be 32-bit wide. Executing these
crypto algorithms in software on microcontrollers is simple
but energy inefficient and slow. The first option to address
this is to optimize software for cryptographic calculations
on microcontrollers. For example, Aranha et al. [9] and
de Clercq et al. [10] propose efficient assembly implemen-
tations by manipulating the data flow to maximize the register
use and achieve around two to three orders of magnitude
of speedup. The second option is to use application-specific
integrated circuits (ASICs), or accelerators, to run a spe-
cific algorithm. ASICs [11]–[13] achieve high performance
with low-energy consumption, but they are only useful for
a single purpose, so multiple ASICs are required to cover
a range of applications. Even for the same function, there
are many different designs optimized for various performance
and power requirements [14], [15]. Finally, the third option
is to build cryptographic coprocessors for supporting dif-
ferent algorithms, which can give higher throughput and

0018-9200 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

996 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018

Fig. 1. Proposed Recryptor architecture.

maintain flexibility. The key idea in coprocessor designs is
that they try to share as much logic as possible among the
supporting algorithms to save area; nonetheless, they still tend
to have high area and power overhead since they implement an
entire separate processor with fetch, decode, register file, and
local memory [16]–[18]. Also, existing coprocessor designs
only cover a limited range of cryptographic algorithm types;
for example, Hutter et al. [17] supports only symmetric and
asymmetric crypto algorithms, while Sayilar and Chiou [18]
supports only symmetric and hash functions.

The importance of security and the limitations in exist-
ing solutions motivate a new architecture in favor of the
requirements for IoT devices. In this paper, we propose a
reconfigurable cryptographic processor, called Recryptor [19],
which exploits in-memory and near-memory computing to
achieve energy efficiency, performance, and programmabil-
ity for IoT security applications. We measure Recryptor’s
speedup and energy gains on core functions for symmet-
ric and asymmetric cryptography as well as hash functions.
Compared with a Cortex-M0 baseline, we achieve energy gains
of 9.1� for AES, �6.7� for ECC finite field multiplication
and reduction (FFMR), and 4.9� for SHA-3 Keccak function
(Keccak-f), with energy gains of �4.1� across crypto algo-
rithms relative to the literature. To the best of our knowledge,
this is the first work that can accelerate public/secret key
cryptography and hash functions at the same time.

The remainder of this paper is organized as follows.
Section II gives the overview of the proposed Recryptor
design. Sections III and IV provide the detailed explanation of
in-memory and near-memory computing. Section V describes
the programmability of Recryptor and our optimized algorithm
implementations on Recryptor. Section VI talks about the
testchips, measured results, and comparisons. Section VII
gives some discussion about further optimizations on Recryp-
tor. The conclusion is drawn in Section VIII.

II. OVERVIEW OF RECRYPTOR

Recryptor contains a standard ARM Cortex-M0 microcon-
troller with 32-kB memory, a low-power serial bus to access
off-chip data, and an arbiter as its internal bus, as shown
in Fig. 1. The optional finite state machines (FSMs) for
further acceleration will be discussed in Section V-D. The
32-kB memory is composed of four 8-kB banks. Three are
implemented using a standard memory compiler, while the
fourth is a custom-designed crypto-SRAM bank (CSB).

Fig. 2. Proposed CSB.

The CSB can operate as a normal memory with 32-bit read
and write, but it also supports large bitwidth in-memory and
near-memory computing. As shown in Fig. 2, the CSB uses
a 10-transistor (10T) bitcell, which has dual read ports in
order to enable different bitwise operations. In each cycle, two
words are accessed simultaneously in the bank and perform
a bitwise logic operation which is read out with standard
sense amplifiers. The memory sub-banks are set to different
widths to support different lengths of vector computation.
After the readout, sense amplifiers are three near-memory logic
functions: a shifter, an arbitrary 64-bit rotator, and an S-box.
These three options, together with data-input from the arbiter
interfacing with the processor, provide the write back data to
memory.

Equipped with in-memory and near-memory computing
capabilities, users can directly program the Cortex-M0 to use
the CSB through a memory-mapped decoder to accelerate
different crypto algorithms. We optimize and demonstrate
AES, FFMR with four different word lengths, and the Keccak
hash function in this paper.

III. RECRYPTOR’S IN-MEMORY COMPUTING

A. 10T Bitcell and Accelerated Bitwise Operations

The 10T bitcell is used in the CSB (Fig. 2). For normal
read operation, only read bitline (RBL) is precharged to
high. RBL will be discharged if the stored data is 1 and
remain high if the stored data is 0. The data is read out
by a skewed inverter-based sense amplifier. For in-memory
computing, either or both RBL and RBL bar (RBLB) will
be precharged, depending on the required bitwise operations.
Fig. 3 shows how to get the bitwise operations on two words.
First, A OR B is achieved by precharging RBL to high and

ZHANG et al.: RECRYPTOR: RECONFIGURABLE CRYPTOGRAPHIC CORTEX-M0 PROCESSOR 997

Fig. 3. 10T bitcell and supported bitwise operations on two words.

Fig. 4. Sub-bank configuration and implementation. (a) Normal 32-bit
memory access by enabling 1 slice. (b) In-memory computing by enabling
sub-banks.

then enabling two words’ read-wordline. If at least one of the
stored data A and B is 1, RBL will be discharged, which is
the function of A NOR B. Similarly, A AND B works the same
way, but operates on RBLB. Finally, A XOR B is achieved by
precharging both RBL and RBLB, and adding an NOR gate
between them.

The supported bitwise operations of CSB are OR/AND/XOR

on two words and COPY/NOT on one word. All of these
operations are performed in one memory cycle. Like an 8T
bitcell, we achieve robust operation at low voltage using
decoupled read. Since we need both RBL and RBLB for
the three logic operations, we have two read ports leading to
10 transistors in the bit cell. However, smaller SRAM cells
could be used for smaller area, however, the conventional
6T bitcell [20] has degraded read noise margins and worse
performance at low voltages, and the 4 � 2T bitcell [21]
requires additional voltage supplies.

B. Configuration of Bank Division

The sub-bank is configured and implemented as shown
in Fig. 4. The 8-kB CSB is comprised of 16 slices, each with

TABLE I

SHIFTER SUPPORTED FUNCTIONS

Algorithm 1 López-Dahb Multiplication and Reduction in Fm
2

Input: x � (xm�1…x0), y � (ym�1…y0), � (rm�1…r0)
Output: c � �cm�1…c0� � xy mod r
[Note: x�y�r�c is at 1 physical line in CSB]
1: Compute T �u� � uy mod r for all polynomials u of

degree lower than ω
2: Compute T ��u� � ur for all polynomials u of

degree lower than ω
3: c � 0
4: for� �m�ω	1� down to 0 do �Syntax SHIFT(x, y):

apply y shift to x
vector using Shifter

5: u�x
 j � ω) & 0xF

6: c� SHIFT(c � T �u�, LS4�
�

�

7: u� � �c
 m� & 0 � F
8: c � c� T ��u�� [Note: reduction step, c stays to be

m bits]
9: end for
10: return c

128 32-bit words. During a normal 32-bit memory access, just
one slice is activated to save energy. During in-memory com-
puting, by enabling different sub-banks or a combination of
them, we can support up to 512-bit single-cycle computations.
The size and placement of these sub-banks were optimized at
design time to support a wide range of security primitives with
efficient signal gating, which will be discussed in Section V-A.

IV. RECRYPTOR’S NEAR-MEMORY COMPUTING

A. Shifter

The shifter is a compact, wiring-based custom design, which
is pitch matched with the SRAM bitcell. There are different
multiplexer (MUX) options depending on the supported func-
tionality. Table I shows the functions implemented under each
sub-bank, which are used in Algorithms 1–3 in Section V.
In the 3-to-1 MUX example in Fig. 5(a), vertical wires contain
nearby bits’ data and an MUX is used to select one of them
as the write back data. Fig. 5(b) demonstrates a small sample
of the physical implementation to show that it is a wiring
intensive design. The top is wired with four metal layers
for horizontal routing and 1.5 minimum spacing. The routing
pattern is consistent by shifting 1 via for nearby bits so the
design and layout complexity is low.

998 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018

Algorithm 2 AES Encryption Function
Input: plaintext p, key k, where P/K is 128bits and at 1
physical line in Bank0, k �
k
0�; k
1�; k
2�; k
3��
Output: ciphertext C
1: C� P �Syntax SHIFT(x, y): apply y

shift to x vector using shifter2: for i�0 to nr	1 do

3: AddRoundKey: C � C � K
4: ShiftRow: D � SHIFT�C, SRow��

5: SubByte: D
 j � � SBOX�D
 j ��,� j �
0, 15�
6: if (i � nr 	 1) do
7: MixColumn: E � SHIFT(D, ROT8); F � SHIFT

(E , ROT8)
8: G � SHIFT�F, ROT8�; H � D � E
9: I
 j � � �H
 j �
7�� ? 0x1B : 0x0
10: C � H � I � E � F � G
11: KeyGen: k
4� � SHIFT(k[3], KG)
12: k
4�
 j � � SBOX�k
4�
 j ��,�J �
0, 3�
13: k
4� � k
4� � Rcon
i �; k
0� � k
0� � k4
14: k
 j � 1� � k
 j � 1��

SHIFT�k
 j �, KG�,� j �
0, 2�
15: end if
16: end for
17: return C

Fig. 5. (a) Shifter 3-to-1 MUX example. (b) Shifter physical implementation
sample.

Fig. 6. Arbitrary 64-bit rotator.

In the Recryptor testchip, the memory read and shifter
operations are implemented as a single-cycle operation, before
writing back to the write flip-flop as shown in Fig. 2.

B. Rotator

The rotator is a custom two-stage design for arbitrary 64-bit
rotation. As shown in Fig. 6, the first stage rotates 0–7 bits and
the second stage rotates in multiples of 8 bits. This architecture

Algorithm 3 KECCAK-f Function

Input: KECCAK[b](S), where S� � S
0 : 4, y� is at 1
physical line, �y � [0, 4]
Output: S
1: for i � 0 to nr 	 1 do
2: θ step: C � S�
0� � S�
1� � S�
2� � S�
3� � S�
4�
3: D � SHIFT�C, LS64� �

SHIFT�SHIFT�C, RS64�, ROT1�
4: S�
y� � S�
y� �,�y �
0, 4�
5: ρ step: read S�
y� in 1 cycle, then S
x, y�

� ROT(S
x, y�, r
x, y��
6: π � step: S�
y� � do SHIFT�S�
y�, LS64) for y

iterations
7: [Note: π � step result is the transpose of π step in odd

iterations]
8: X step: E
y� � SHIFT�S�
y�, LS64)
9: S�
y� � S�
y���NOTE
y�� AND SHIFT�E
y�,

LS64�
10: ι step: S
0, 0� � S
0, 0� � RC
i �
11: end for
12: return S

Fig. 7. Proposed S-box implementation.

is similar as [22], which requires much less area than the long
wires needed of directly rotating from 0 to 63 bits. We use the
same physical implementation, similar as a barrel shifter [23],
for both stages in our design. However, transmission gates
are used for the MUXes to achieve low energy and stable
operation at low voltages. By using wire meshes, the same
custom compact layout can be used for the first and second
stage, which reduces the area of long wires for shifting
multiples of 8 bits and design time.

C. S-Box

The S-box is a commonly used component in block ciphers
for byte substitution. It is a nonlinear function that performs a
multiplicative inversion on Galois field (GF) (28�, followed by
an affine transformation. This algorithm is more efficient with
a transformation into the composite field GF (24�2 [14]. Our
previous design [11] proposed a two-stage implementation by
adding flip-flops to reduce glitch power due to the presence
of fast and slow paths. In this design as shown in Fig. 7,
we further replace the middle flip-flops with latches due to
a longer clock-cycle, which enables a 1 cycle latency of this
block as well as saving a bit of area.

ZHANG et al.: RECRYPTOR: RECONFIGURABLE CRYPTOGRAPHIC CORTEX-M0 PROCESSOR 999

TABLE II

ESTIMATED # OPERATIONS ACCORDING TO ALGORITHM 1

V. PROGRAMMABILITY AND OPTIMIZED

ALGORITHM IMPLEMENTATIONS

Users can write software to configure Recryptor to accel-
erate different cryptographic algorithms. We demonstrate one
algorithm for each category to show Recryptor’s flexibility
and performance. First, we will analyze FFMR, the basic
operations for ECC. Then, we will analyze AES for secret
key cryptography and Keccak-f for hash functions.

A. Finite Field Multiplication and Reduction

Field multiplication computes x � y � z, where x and y are
the binary polynomials of degree at most (m	1), and z is the
degree at most (2m 	 2). In order to return the multiplication
results to degree of at most (m 	 1), field reduction computes
z mod r � c, where r is a polynomial of degree m.

The López-Dahab (LD) field multiplication algorithm [24]
uses a windowing method with a precomputed table. With a
window width of ω bits, the input x is shifted right to scan its
last ω bits at a time. Then each ω bits are used as an index
for the precompute table lookup. However, the number in the
finite field needs m bits, and the inputs/output/intermediate
values are stored in the memory. Due to register spilling on
the M0, using this algorithm tends to create a large memory
accesses. Aranha et al. [9] and de Clercq et al. [10] optimize
the overflow to solve this spilling problem by maximizing the
register reuse.

We propose a new optimization to combine the (LD)
field multiplication and reduction algorithm with the goal of
reducing the number of operations on Recryptor, as shown
in Algorithm 1. The problem of register spilling does not
need to be considered in this proposed method since all the
calculations are computed in/or near memory with m bits of
parallelism.1 Table II lists the estimated number of operations
needed for each step in Algorithm 1, with respect to the curve
degree m and window width ω. The first step computes 2ω of
m bits numbers; 0 � y and 1 � y need memory reads with copy
and data write back; and all others need the XOR operation
between two words. For 2t �y (t � 0…ω	1), additional SHIFT
operations before XOR are needed to remove the overflowing
bits. Step 5 would apply SHIFT to the input x and use the
first ω bits as the index to the precompute table in step 1.

1The Recryptor testchip in this paper supports up to 512 bits of parallelism,
based upon our implementation.

TABLE III

ENABLED SUB-BANK OF DIFFERENT WORD LENGTH FOR FFM

Fig. 8. Memory-mapped decoder.

Then, in step 6, we do an XOR and a 4-bit SHIFT. Reduction
is considered within our algorithm with steps 2, 7, and 8,
in order to reduce the size of intermediate values.

Table III shows where to perform calculations of different
word lengths by activating different sub-banks. The sub-bank
is configured to select nearby banks for the options listed, with
efficient signal routing for shift operations. With the estimated
number of operations in the columns 2, 3, and 4 to be 2,
and the last column to be 1, the total number of estimated
operations for multiplication in F233

2 is 330, compared to 4980
on a baseline Cortex-M0 software implementation and 2968
with register optimization [10].

B. Advanced Encryption Standard

Algorithm 2 shows in detail the implementation of AES
on Recryptor. Steps 1, 3, and 4 use 128-bit operations, and
step 5 uses the S-box block on 1 byte for 16 cycles in total.
Steps 7–10 implement the MixColumn operation by left
rotating by 1, 2, and 3 bytes, adding intermediate val-
ues D and E , and then multiplying based upon the MSB for
each byte in H [j]. The KeyGen operation is achieved using
32-bit operations in steps 11, 13, and 14 and 8-bit operations
in step 12.

The input/output/intermediate 128-bit values are all stored
in the CSB’s sub-bank 2, where more shifting options used by
AES are supported (see Table I). Compared with an AES ASIC
design, our solution only needs an additional S-box block,
which occupies 30% of the area of the current smallest AES
ASIC design [11].

1000 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018

Fig. 9. Die photograph of baseline and Recryptor in 40-nm CMOS.

C. Keccak-f

The Keccak-f permutation function [6], with b � 1600,
goes through 24 iterations of five steps on 1600 bits
of data, which are treated as a block of 5 � 5 64-bit
words. Algorithm 3 shows the detailed implementation of the
Keccak-f on Recryptor. The 320-bit-wide operations include
the in-memory bitwise operations of AND/NOT/XOR/COPY

and the near-memory operations of left/right 64-bit shifts.
Keccak is slow to run on a 32-bit processor since it

operates on 64-bit words. More specifically, there are two
main issues with implementing this function on Recryptor.
First, the arbitrary rotation of a 64-bit number in the ρ step
would be expensive on 32-bit MCUs like the Cortex-M0.
Schwabe et al. [25] propose the bit-interleaving technique in
software, by collecting even and odd positions of a 64-bit data
into two 32-bit data. In contrast, Recryptor applies a custom
two-stage 64-bit rotator placed in the near-memory computa-
tion block to save energy and time on this step. The second
problem is that the array transpose in the π step [26] would be
very hard to do in-memory since in-memory operations require
aligned data. To address this problem, the proposed π � step
combines the even/odd iterations and modifies the intermediate
results of each iteration, which helps avoid the large memory
accesses needed for matrix transpose.

D. Cryptographic Finite State Machines

Programming Recryptor in software requires only writing
a command to a memory-mapped decoder. The command
indicates the opcode and which word lines to compute on and
write back to. As shown in Fig. 8, the CSB configures itself
based upon the detailed information sent by the decoder,
i.e., addresses for in-memory computing and the number of
shift/rotate bits for near-memory computing. Therefore, each
bitwise operation can be written in detail inside the C doe.

For in-memory operations, input data must be aligned inside
memory. Currently, this data alignment is done manually,

but this could be optimized by operand locality and is
addressed in [27].

Since loads and stores on the M0 are somewhat expensive,
to further improve performance, we implemented optional
FSMs to automatically issue the commands at a small area
overhead.

VI. RECRYPTOR TESTCHIP DESIGN AND

EXPERIMENTAL RESULTS

A. Testchips and Measurements

Both the baseline and the Recryptor designs, based upon the
ARM Cortex-M0 processor, were implemented on a testchip
in 40-nm CMOS. Chip micrographs are shown in Fig. 9. The
switch from an 8-kB compiled SRAM to a custom compute
memory increases its area from 55k μm2 to 180k μm2. The
layout of CSB is compact, with bitcell banks around the side,
memory decoders in between banks and the shifter, timing
generation, and rotator in the center. The area overhead of
crypto-FSMs for AES/ECC/Keccak is 0.29k/2.67k/0.62k μm2,
respectively. The total area overhead of Recryptor over the
baseline is 36%, including the interface bus.

However, we used design-rule bitcells for the CSB, and if
we shrunk them to push-rule bitcells (with bitcell area shrunk
by 50% and row peripherals area shrunk by 30%), the memory
could be expected to drop to 102k μm2. Therefore, area
overhead over the existing SRAM is only 47k μm2. The total
area overhead would drop to 18%.

Fig. 10 shows the measured maximum frequency (Fmax)
of the custom 10T SRAM. The blue line shows the Fmax
of normal 32-bit reads, while the red line shows the oper-
ation sequence of wide in-memory computing reads, near-
memory shifts, and then data write back. Since the same sense
amplifier is used for the normal and in-memory computing
reads, the worst case Fmax for them should be the same.
At low voltages, the Fmax of in-memory computing is lim-
ited by the shifter. Fig. 11 shows the minimum functional

ZHANG et al.: RECRYPTOR: RECONFIGURABLE CRYPTOGRAPHIC CORTEX-M0 PROCESSOR 1001

Fig. 10. Measured Fmax of the custom 10T SRAM.

Fig. 11. Measured Vmin across temperature of the custom 10T SRAM.

Fig. 12. Measured frequency of baseline and Recryptor across voltages.

voltage (Vmin) across temperatures for normal CSB reads. The
Vmin of 25 °C/125 °C is 0.46/0.66 V, respectively.

Fig. 12 shows the measured performance of the baseline and
Recryptor chips. They both achieve similar frequencies, with
a slight difference attributed to die-to-die variation. Recryp-
tor’s power is at most 30% larger than the baseline across
voltages (Fig. 13), but this overhead is outweighed by the

Fig. 13. Measured power of baseline and Recryptor across voltages.

application speedup. The overall performance improvement
and energy reduction of each algorithm will be discussed in
the following section.

B. Overall Comparison Among Algorithms

Different in-memory operations and near-memory logic
are activated when running different crypto functions.
Fig. 14 shows the simulated CSB power breakdown. Table IV
provides the overall comparison results of three implemented
algorithms running on the baseline Cortex-M0, Recryptor, and
other processor-based implementations [10], [17], [18].

For FFMR, we support word lengths of 163–409 bits.
Recryptor achieves �11� speedup and �6.7� energy savings
over the baseline software [28]. The performance improve-
ments and energy reductions increase as the word length
increases, showing that Recryptor scales well to large bitwidth
operations. An assembly code optimization [10] is included for
233-bit, and this method requires extra effort when the word
width changes, which is inefficient regarding the design time.

For Keccak, we use [29] as a baseline implementation. To
the best of our knowledge, there has not been any coprocessor
implementation supporting Keccak, so an ASIC design [12] is
included in Table IV for comparison.

For AES, we use the software implementation as our base-
line from [30]. Compared to this, Recryptor achieves around
9� speedup and energy. Fig. 15 shows further comparisons
in log scale, including an ASIC [11] and a crypto coproces-
sor [18] design. Overall, Recryptor serves as an intermediate
solution among the compared architectures in terms of area,
throughput, energy, and programmability.

VII. DISCUSSION

A. Memory Capacity

Table V shows the minimum required memory capacity
for computing and the modules required for each algorithm,
with the last row summarizing all implemented algorithms.
Only 1.84 kB of memory is required to support the chosen
algorithms, although the CSB as implemented here supports
8 kB of in-memory computing for greater flexibility. Future
optimizations can explore different bank sizes, bitwidths of

1002 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018

Fig. 14. Simulated power breakdown of different security functions.

TABLE IV

COMPARISON TABLE OF DIFFERENT CRYPTO ALGORITHMS AND DESIGNS

Fig. 15. Comparison of an ASIC [11], Recryptor, baseline, and a coprocessor [18] design for AES.

in-memory operations, and different near-memory modules,
depending on the desired algorithms.

B. Performance and Overhead

The tradeoff between performance and hardware overhead
is an important factor for the proposed Recryptor design.

The hardware overhead of Recryptor is highly related with
the supported functions’ width, i.e., the parallelism of
in-memory and near-memory computing. For the in-memory
part, it is related with the peripherals required for each col-
umn (Fig.2), which includes two sense amplifiers an XOR and
a 3-to-1 MUX. Regarding the implementation in this paper,

ZHANG et al.: RECRYPTOR: RECONFIGURABLE CRYPTOGRAPHIC CORTEX-M0 PROCESSOR 1003

TABLE V

EFFECTIVE MEMORY CAPACITY FOR COMPUTING
AND THE REQUIRED MODULES

the column peripheral is 46% of height for the 128-row bitcell
array. For the near-memory part, it is related with the added
ASIC designs.

As shown in Section VI-B, the performance comparisons
among Recryptor, ASICs, and coprocessors vary for different
algorithms, which is dependent on the parallelism exploited
by the hardware implementations. For example, on AES,
Recryptor can perform 128-bit wide XORS, however, we used
an 8-bit S-box design with a one cycle delay for area and
energy reasons. This creates a performance bottleneck, which
explains why the average performance of AES on Recryptor
is lower than that of a pipelined ASIC design [11]. However,
significantly higher performance can be achieved with a larger
S-box or more shift functions on other sub-banks. On the
other hand, on Keccak, our Recryptor implementation achieves
throughput similar to that of an ASIC design. This is because
Recryptor can exploit 320-bit wide parallelism in Keccak,
which is also true of ASIC designs [12].

In addition, the memory bus width can also be a tradeoff
factor, especially in the protocol level (e.g., transport layer
security [36]). But just for the cryptographic operations, it is
currently mostly done with long-width computation inside the
CSB of Recryptor.

C. Power Analysis Attack

The memory bus is not trusted and is vulnerable to phys-
ical attacks, for example, by probing [33]. There have been
expensive techniques addressed to solve this problem, for
example, oblivious RAM [34] uses address obfuscation and
InvisimMem [35] requires 3-D integration to stack DRAM
layers on top of logic layers. The Recryptor’s idea of compute
memories could provide inexpensive encryption to protect the
memory bus, taking the attack model to treat in-memory and
near-memory as a whole module, but not to probe the internal
connection inside CSB.

In addition, a preliminary differential power analysis (DPA)
attack is analyzed on Recryptor, for key extractions in AES
algorithms. An AES ASIC with 8-bit datapath is also included
as a baseline. The attack setup is to first run Hspice simulation
on the netlist of the baseline and Recryptor’s CSB, and then
use MATLAB [31] to calculate correlations and extract every
8-bit key. Each power trace has 20 executions of the 128-bit

Fig. 16. Simulated DPA on baseline AES ASIC with 20 traces.

Fig. 17. Simulated DPA on recryptor’s CSB with 300 traces.

plaintexts with 1 ns sampling time, while keep the same key
each time. The DPA result of baseline and Recryptor’s CSB
is shown in Figs. 16 and 17. The minimal number of traces to
reveal the first byte of the correct key (0 � 2 bit) is 20 traces
for baseline, and 300 traces for Recryptor’s CSB. An ideal
analysis of DPA attack is shown here, but considerations
of real-world problems (e.g., clock jitter) and other attacks
(e.g., fault injection attack) are suggested for further analysis.

VIII. CONCLUSION

There are many challenges in IoT security due to the
limited computational resources and required flexibility.
Current ASICs and coprocessors have limitations in different
aspects. In this paper, we proposed a new architecture called
Recryptor, which uses in-memory and near-memory comput-
ing to efficiently support large vector calculations for crypto
algorithms. It maintains programmability and has over 80%
runtime and energy savings compared with a baseline proces-
sor architecture. Overall, Recryptor is a good intermediate
solution in terms of balancing area, energy, throughput, and
programmability.

ACKNOWLEDGMENT

The authors would like to thank TSMC University Shuttle
Program for chip fabrication. They also would like to thank
Kaiyuan Yang and Supreet Jeloka for their input and
discussions.

1004 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 4, APRIL 2018

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[2] V. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 218.
New York, NY, USA: Springer-Verlag, 1986, pp. 417–426.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
no. 177, pp. 203–209, Jan. 1987.

[4] STMicroelectronics STSAFE-A100. Accessed: Oct. 2017. [Online].
Available: http://www.st.com/en/secure-mcus/stsafe-a100.html

[5] NIST. (Nov. 2001). Advanced Encryption Standard (AES), FIPS PUBS
197. [Online]. Available: http://csrc.nist.gov/archive/aes/

[6] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Keccak spec-
ifications,” Submission to NIST (Round 3), 2011. [Online]. Available:
http://csrc.nist.gov/groups/ST/hash/sha3/Round3/submissions_rnd3.html

[7] Algorithms, Key Size and Parameters Report, ENISA, Heraklion, Greece,
2014.

[8] ARM CORTEX-M Series. Accessed: Oct. 2017. [Online]. Available:
http://www.arm.com/products/processors/cortex-m

[9] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, “Efficient
implementation of elliptic curve cryptography in wireless sensors,” Adv.
Math. Commun., vol. 4, no. 2, pp. 169–187, May 2010.

[10] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede, “Ultra
low-power implementation of ECC on the ARM cortex-M0�,” in Proc.
51st ACM/EDAC/IEEE Design Autom. Conf. (DAC), San Francisco, CA,
USA, Jun. 2014, pp. 1–6.

[11] Y. Zhang, K. Yang, M. Saligane, D. Blaauw, and D. Sylvester, “A com-
pact 446 Gbps/W AES accelerator for mobile SoC and IoT in 40 nm,”
in Proc. IEEE Symp. VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA,
Jun. 2016, pp. 1–2.

[12] P. Pessl and M. Hutter, “Pushing the limits of SHA-3 hardware imple-
mentations to fit on RFID,” in Cryptographic Hardware and Embed-
ded Systems—CHES (Lecture Notes in Computer Science), vol. 8086,
G. Bertoni and J.-S. Coron, Eds. Heidelberg, Germany: Springer, 2013,
pp. 126–141.

[13] E. Wenger, M. Feldhofer, and N. Felber, “Low-resource hardware design
of an elliptic curve processor for contactless devices,” in Information
Security Applications—WISA (Lecture Notes in Computer Science),
vol. 6513, Y. Chung and M. Yung, Eds. Heidelberg, Germany: Springer,
2010, pp. 92–106.

[14] S. Mathew et al., “340 mV–1.1 V, 289 Gbps/W, 2090-gate NanoAES
hardware accelerator with area-optimized encrypt/decrypt GF(24�2 poly-
nomials in 22 nm tri-gate CMOS,” IEEE J. Solid-State Circuits, vol. 50,
no. 4, pp. 1048–1058, Apr. 2015.

[15] S. K. Mathew et al., “53 Gbps native GF(24�2 composite-field AES-
encrypt/decrypt accelerator for content-protection in 45 nm high-
performance microprocessors,” IEEE J. Solid-State Circuits, vol. 46,
no. 4, pp. 767–776, Apr. 2011.

[16] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “Processor
with side-channel attack resistance,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 2013,
pp. 50–51.

[17] M. Hutter, M. Feldhofer, and J. Wolkerstorfer, “A cryptographic proces-
sor for low-resource devices: Canning ECDSA and AES like sardines,”
in Information Security Theory and Practice. Security and Privacy of
Mobile Devices in Wireless Communication, vol. 6633. New York, NY,
USA: Springer-Verlag, 2011, pp. 144–159.

[18] G. Sayilar and D. Chiou, “Cryptoraptor: High throughput reconfigurable
cryptographic processor,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, Nov. 2014, pp. 155–161.

[19] Y. Zhang et al., “Recryptor: A reconfigurable in-memory cryptographic
Cortex-M0 processor for IoT,” in Proc. IEEE Symp. VLSI Circuits (VLSI-
Circuits), Jun. 2017, pp. 264–265.

[20] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE J. Solid-State Circuits, vol. 51,
no. 4, pp. 1009–1021, Apr. 2016.

[21] Q. Dong et al., “A 0.3 V VDDmin 4�2T SRAM for searching and
in-memory computing using 55 nm DDC technology,” in Proc. IEEE
Symp. VLSI Circuits (VLSI-Circuits), Jun. 2017, pp. 160–161.

[22] L. Sigal et al., “Circuit design techniques for the high-performance
CMOS IBM S/390 parallel enterprise server G4 microprocessor,” IBM
J. Res. Develop., vol. 41, no. 4, pp. 489–503, Jul. 1997.

[23] J. Rabaey, Digital Integrated Circuits: A Design Perspective.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[24] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York, NY, USA: Springer-Verlag, 2004.

[25] P. Schwabe, B.-Y. Yang, and S.-Y. Yang, “SHA-3 on ARM11 proces-
sors,” in Proc. 5th Int. Conf. Cryptol. Africa, Jul. 2012, pp. 324–341.

[26] Y. Wang, Y. Shi, C. Wang, and Y. Ha, “FPGA-based SHA-3 acceleration
on a 32-bit processor via instruction set extension,” in Proc. IEEE
Int. Conf. Electron Devices Solid-State Circuits (EDSSC), Singapore,
Jun. 2015, pp. 305–308.

[27] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Austin, TX, USA, Feb. 2017, pp. 481–492.

[28] D. Aranha and C. P. L. Gouvêa. (2013). RELIC Cryptographic Toolkit.
[Online]. Available: https://code.google.com/p/relic-toolkit/

[29] SUPERCOP. Accessed: Oct. 2017. [Online]. Available:
https://github.com/floodyberry/supercop

[30] Tiny-AES128-C. Accessed: Oct. 2017. [Online]. Available:
https://github.com/kokke/tiny-AES128-C

[31] DPAbook Online Material. Accessed: Oct. 2017. [Online]. Available:
http://dpabook.iaik.
tugraz.at/onlinematerial/matlabscripts/

[32] E. Wenger and M. Hutter, Exploring the Design Space of Prime Field
vs. Binary Field ECC-Hardware Implementations. Berlin, Germany:
Springer, 2012, pp. 256–271.

[33] (2006). I2C Bus Monitor. Accessed: Apr. 1, 2016. [Online]. Available:
http://www.jupiteri.com/

[34] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, 1996.

[35] S. Aga and S. Narayanasamy, “InvisiMem: Smart memory defenses for
memory bus side channel,” in Proc. Int. Symp. Comput. Archit. (ISCA),
2017, pp. 94–106.

[36] The Transport Layer Security (TLS) Protocol, Version 1.2. Accessed:
Oct. 2017. [Online]. Available: https://tools.ietf.org/html/rfc5246

Yiqun Zhang (S’14) received the B.S. degree in
electrical engineering and computer science from
the University of Michigan, Ann Arbor, MI, USA,
and Shanghai Jiaotong University, Shanghai, China,
in 2013, and the M.S. degree from the University of
Michigan in 2016, where she is currently pursuing
the Ph.D. degree.

Her current research interests include security
system, fault tolerance circuits, and error-resilient
systems.

Ms. Zhang was a recipient of the Marian Sarah
Parker Scholars Program Scholarship in 2012 from the University of
Michigan.

Li Xu (S’15) received the B.Eng. degree in
automation from Tongji University, Shanghai, China,
in 2009, and the M.S. degree in electrical and
computer engineering from Northeastern University,
Boston, MA, USA, in 2016. He is pursuing the Ph.D.
degree with the University of Michigan, Ann Arbor,
MI, USA.

From 2009 to 2011, he was an IC Design Engineer
with Ricoh Electronic Devices Shanghai Company,
Ltd., where he was involved in LDO and dc/dc
converter projects. In 2015, he was a Design Intern

with Linear Technology Corporation, Colorado Springs, CO, USA. His current
research interest includes energy-efficiency mixed-signal circuit design.

Qing Dong (S’14) received the B.S. and M.S.
degrees in microelectronics from Fudan University,
Shanghai, China, in 2010 and 2013, respectively.
He is currently pursuing the Ph.D. degree with the
University of Michigan, Ann Arbor, MI, USA.

His current research interests include memory
circuits design, and monitoring circuits design for
process variation and BTI.

Mr. Dong was a recipient of the Best Paper
Awards at the 2012 IEEE International Conference
on Solid-State and Integrated Circuit Technology,

the 2015 IEEE International Symposium on Circuits and Systems, and the
2016 IEEE Symposium on Security and Privacy.

ZHANG et al.: RECRYPTOR: RECONFIGURABLE CRYPTOGRAPHIC CORTEX-M0 PROCESSOR 1005

Jingcheng Wang (S’15) received the B.S. and M.S.
degrees in electrical and computer engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2014 and 2017, respectively, where he is currently
pursuing the Ph.D. degree in electrical engineering.

His current research interests include high-speed
and low-power VLSI circuits and systems.

Mr. Wang was a recipient of the Dwight F. Benton
Fellowship in 2015 from the University of Michigan.

David Blaauw (M’94–SM’07–F’12) received the
B.S. degree in physics and computer science from
Duke University, Durham, NC, USA, in 1986,
and the Ph.D. degree in computer science from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 1991.

He was with Motorola, Inc., Austin, TX, USA,
where he was the Manager of the High Perfor-
mance Design Technology Group. Since 2001, he
has been on the faculty at the University of Michi-
gan, Ann Arbor, MI, USA, where he is currently

a Professor. He has authored or co-authored over 500 papers and holds
50 patents. His current research interests include VLSI design including near-
threshold and subthreshold design for ultralow power mm-scale sensor nodes.

Dr. Blaauw was the Technical Program Chair and the General Chair of
the International Symposium on low-power electronic and design. He was
also the Technical Program Co-Chair of the ACM/IEEE Design Automation
Conference and a member of the ISSCC Technical Program Committee.

Dennis Sylvester (S’95–M’00–SM’04–F’11)
received the Ph.D. degree in electrical engineering
from the University of California, Berkeley, CA,
USA, in 1999.

He has held research staff positions with the
Advanced Technology Group, Synopsys, Mountain
View, CA, USA, the Hewlett-Packard Laboratories,
Palo Alto, CA, USA, and Visiting Professorships
at the National University of Singapore, Singapore,
and Nanyang Technological University, Singapore.
He is currently a Professor of electrical engineering

and computer science with the University of Michigan, Ann Arbor, MI,
USA, and the Director of the Michigan Integrated Circuits Laboratory, Ann
Arbor, a group of 10 faculty and more than 70 graduate students. He is a
Co-Founder of Ambiq Micro, Austin, TX, USA, a fabless semiconductor
company developing ultralow-power mixed-signal solutions for compact
wireless devices. He has authored or co-authored over 375 articles along
with one book and several book chapters. He holds 20 U.S. patents. His
current research interests include the design of millimeter-scale computing
systems and energy-efficient near-threshold computing.

Dr. Sylvester served on the Executive Committee of the ACM/IEEE Design
Automation Conference. He serves on the Technical Program Committee of
the IEEE International Solid-State Circuits Conference and as a Consultant
and Technical Advisory Board Member for electronic design automation and
semiconductor firms in his research areas. He has served as an Associate
Editor for the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS and the IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION SYSTEMS, and a Guest Editor
for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II. He was
a recipient of the NSF Career Award, the Beatrice Winner Award at
ISSCC, an IBM Faculty Award, an SRC Inventor Recognition Award,
eight Best Paper Awards and Nominations, the ACM SIGDA Outstanding
New Faculty Award, the University of Michigan Henry Russel Award for
distinguished scholarship, and the David J. Sakrison Memorial Prize as the
most outstanding research for his dissertation in the Electrical Engineering
and Computer Sciences Department, University of California, Berkeley.

